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Abstract
We focus on a reaction–diffusion approach proposed recently for experiments
on combustion processes, where the heat released by combustion follows
first-order reaction kinetics. This case allows us to perform an exhaustive
analytical study. Specifically, we obtain the exact expressions for the speed
of the thermal pulses, their maximum temperature and the condition of self-
sustenance. Finally, we propose two generalizations of the model, namely,
the case of several reactants burning together, and that of time-delayed heat
conduction. We find an excellent agreement between our analytical results and
simulations.

PACS numbers: 05.40.−a, 89.20.−a

1. Introduction

Reaction–diffusion (RD) equations may be written in the general form

∂n(x, t)

∂t
= D(x, t)

∂2n(x, t)

∂x2
+ F(n, x, t) (1)

where n(x, t) is a density distribution function, D is the diffusion coefficient and F(n, x, t) is
a function accounting for production or annihilation processes. These sort of equations have
attracted great attention from many different fields. Their main advantage lies in the fact that
they admit travelling solutions n(x, t) = n(x − vt), with v being the characteristic speed [1].

If we assume that the medium we are considering is homogeneous, as most works do
[1–7], we can take the diffusion coefficient as a constant parameter. Then, the solution of
equation (1) and the exact expression of v are determined solely by the form of F. Some
well-known cases have been reported before.
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(a) F = an(1 − n), with a > 0. In this case, equation (1) turns into the F-KPP equation,
whose solutions have been widely studied [2, 3]. Wavefront solutions arise both from
numerical simulations and theoretical analysis, and the wavefront speed v is found to
follow the expression [2]

v = 2
√

aD. (2)

There are many works that have proved the usefulness of this term on fields as population
dynamics and ecology, as the logistic growth nt = an(1 − n) shows a great ubiquity
in natural systems. Some examples are biological invasions [4], human migrations [5],
spread of viruses [6], etc.

(b) F = −b(n − n0) + A e−E/Rn, with b, k, E,R > 0. This term has been used in some
combustion models [8–11], n being the temperature of the system. The linear term
concerns the heat lost by convection, while the second one comes from the Arrhenius law
[8, 12]. As the exponential dependence on the rate constant is supported by experiments
for many chemical processes (as combustion), its theoretical significance has also received
great attention [12]. E and A have been traditionally called the activation energy and the
pre-exponential factor, respectively. Nevertheless, the exact solution for this case (b) is
not known and previous papers on this field have just given some approximations based
on linearization methods [9, 10].

In this paper we are going to study analytically for the first time the case

F ∼ −b(n − n0) + c e−αtH(t) (3)

where c, α > 0 and H(t) is the Heaviside function. This expression has been proposed before
for the modellization of combustion in two-dimensional fuel beds obtaining good agreement
between simulations and experiments [13], therefore offering an interesting alternative to the
well-known case (b). Nevertheless, there is a lack of analytical study for this model which we
want to amend with this work.

The main advantage, in comparison to previous RD approaches, is that in this new case
the temperature spreads as a travelling pulse. It is different to what happens in cases such as
(b); there, the temperature reaches an asymptotic value for which the effects of convection and
combustion are in equilibrium, and so the final solution is a travelling front (which implies that
the reactants go on burning indefinitely). Thus, the approach we present here seems to give
a more realistic approach for a combustion process. Moreover, this model presents potential
applications to other systems in which pulses (rather than fronts) appear as a consequence of
the consumption of one of the reactants (species), as chemical systems [14], predator–prey
waves [1] or intracellular signal propagation [15].

This paper is organized as follows. In section 2 we present the general equations of our
model and show how analytical solutions can be achieved by means of a piecewise description
of the model. It leads us to exact expressions for the speed of thermal pulses, their maximum
temperature and a critical condition for their self-sustenance (i.e. existence). Section 3 focuses
on the more general case of several reactants burning together; in this case, we show that
analytical solutions are still reached in the appropriate regime. In section 4 the classical
conduction equation (based on Fick’s law) is replaced by the Maxwell–Cattaneo expression,
which involves delay effects; we also obtain the exact solution for this case similarly to that
in section 2. Finally, section 5 is devoted to final conclusions.
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2. The model

For convenience, we will analyse this model and the generalizations we propose below in
terms of combustion processes. So, we use the temperature T as the main variable instead
of n.

The derivation of the combustion term in our model comes from the assumption that the
fuel burns at a constant rate α which is proportional to the fraction of the fuel remaining
unreacted (first-order reaction). We then have that the fuel density ρ decreases at a given point
according to

ρ = ρ0 e−αt . (4)

Therefore, we can write

∂T

∂t
= −Q

∂ρ

∂t
= Qαρ0 e−αt (5)

where we define Q ≡ Q∗/m as the quotient between the enthalpy of combustion Q∗ per unit
mass and the heat capacity m per unit area (considering a 2D system).

Finally, we introduce a Heaviside function for taking into account the fact that the
combustion process at any given point starts just when the temperature there reaches a threshold
value Th, which is the ignition temperature. Then, our main equation can be written as

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
− k(T − T0) + Qαρ0 e−α(t−th)H(t − th). (6)

The three terms on the right-hand side account for heat diffusion, heat interchanges by
convection with the air (T0 is the ambient temperature) and heat released by combustion,
respectively. th can be interpreted as the time where the ignition temperature is reached at a
given point of the media; so, th depends explicitly on the spatial variable x. We use the form
H(t − th) instead of H(T − Th) because it is more convenient from mathematical point of
view, as we shall show below. We stress that such an approach has been proposed before
for the modellization of combustion in two-dimensional fuel beds, obtaining good agreement
between simulations and experiments [13], but no analytical expressions (i.e. for the pulse
speed) have been previously derived.

We will use a method based on that presented recently by Theodorakis and Svoukis [16].
They took the dimensionless partial differential equation (PDE)

∂T

∂t
= ∂2T

∂x2
+ F(T ) (7)

and showed that when the production term F(T ) does not allow us to find analytic solutions,
a good way for obtaining an approximate solution consists in a piecewise linear emulation of
F(T ) and requiring the solution to be continuous and smooth everywhere. They also used the
condition that the PDE must exhibit travelling solutions with constant speed v, as usual in RD
equations.

We claim that the same ideas can be applied when the production function has a piece-like
form as that in our model, where

(i) F = −k(T − T0) for t < th

(ii) F = −k(T − T0) + Qαρ0 e−α(t−th) for t > th.
(8)

According to our arguments, we can solve (i) and (ii) separately and make both solutions
continuous and smooth at t = th. By doing this, we expect to find an expression which gives
us the explicit form of the speed v, as in [16].
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2.1. General solution

First, we assume that travelling solutions (i.e. which propagate without changing shape and
with constant speed v) arise from our model, so the variable z = x − vt can be used instead of
x and t. In consequence, it must be noted that our method (as most RD models) is restricted to
those n-dimensional cases where the front has radial symmetry, so z can be defined properly,
x being the distance to the origin. Now, if we define the variable T ∗ ≡ T − T0 for simplicity,
equation (6) becomes

∂T ∗

∂z
= D

∂2T ∗

∂z2
− kT ∗ + Qαρ0 e

αz
v H(−z) (9)

where we have considered that the position of the pulse at time t is determined by those points
where the combustion starts at that moment, so t − th = t − x

v
= − z

v
. We separate the solution

of the model into two parts (from now on, we will omit the asterisk in T ∗ for simplicity):

(i) z > 0. This region represents the points where combustion is yet to begin at a given time,
so we have F = −kT and the exact solution of the ordinary differential equation (ODE)
can be found as

T (z) = A1 em+z + A2 em−z (10)

where

m± = −v ±
√

v2 + 4Dk

2D
. (11)

It is worthwhile to note that in any case m+ > 0 and m− < 0. The values of the
integration constants A1 and A2 will arise from the boundary conditions, which in this
case are

T (∞) = 0 T (0) = Th. (12)

Finally, we obtain

T (z) = Th em−z. (13)

(ii) z < 0. After combustion starts at a certain point, the last term in (9) is nonzero.
Nevertheless, as the new term does not depend explicitly on T, the ODE can still be solved
exactly, giving

T (z) = B1 em+z + B2 em−z + � e
αz
v (14)

where

� = Qαρ0v
2

(k − α) v2 − Dα2
. (15)

For this second region, the boundary conditions are

T (−∞) = 0 T (0) = Th (16)

so we have

T (z) = Th em+z + �
(
e

αz
v − em+z

)
. (17)

To obtain this solution we have implicitly used the condition that T is continuous at z = 0
by means of the ignition temperature Th. According to our discussion above, we still require
the smoothness of the solution at z = 0. From this extra condition, we will find an expression
that will allow us to determine the velocity. Equalling the derivatives of T (z) in the two
regions at z = 0 leads us to the relation

Th(m− − m+) = �
(α

v
− m+

)
. (18)
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Figure 1. Comparison between simulations (symbols) and theory (line) for the pulse speed v

(circles) and Tmax (squares) as a function of the adimensional number Qρ0/Th. The figure also
shows the threshold below which pulses cannot propagate. In this and all of the other figures,
the values of the parameters used in the simulations are those estimated in [13], i.e. Q =
3605 m2 C kg−1, k = 0.071 s−1, D = 3.1 × 10−5 m2 s−1, α = 0.19 s−1, ρ = 0.4 kg m−2,

Th = 300 ◦C.

Equation (18) gives an expression for v as a function of the parameters of the model.
Nevertheless, as m± and � depend on v in a complicated way, the explicit expression for
the velocity cannot be given easily. So, we will take (18) as the general expression for v.
However, analytical calculus from (18) allows us to find the condition required for obtaining
real positive values of v; it will be the condition for the existence of travelling pulses. We find
that this condition has the form

Qρ0

Th

> 1 +
2(k +

√
2kα)

α
≡

(
Qρ0

Th

)
cr

. (19)

This condition is noteworthy from the experimental point of view as from the
characteristics of the system and the fuel chosen we can know the minimum initial density ρ0

needed for obtaining a self-sustained propagative process. Under the critical threshold, the
amount of heat released by chemical reactions is not sufficient to heat new reactants up to the
ignition temperature, so propagation is not possible.

Finally, we will predict analytically the maximum temperature (Tmax) of the pulse, as there
are many real cases in which this parameter is of great interest, specially for safety purposes.
As the peak of the pulse is reached for z < 0 we must now use just the solution from the
region (ii). We can obtain easily through the derivative of equation (17) that the general
expression for Tmax is

Tmax = (Th − �)

(
�α

vm+ (Th − �)

) m+
m+−α/v

+ �

(
�α

vm+ (Th − �)

) α/v

m+−α/v

. (20)

The validity of these expressions was analysed by comparing them with simulations of
equation (6). In the simulations, we started from the initial conditions

T = Th for x < x0

T = 0 for x > x0
(21)

i.e. we supposed that the combustion process started at t = 0 in a little domain of the
media (which has to be great enough to allow the formation of the pulses), while the rest
was still at the ambient temperature. In figure 1 we have performed a comparison between
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Figure 2. Plot of the no-propagation threshold (Qρ0/Th)cr as a function of the convection
parameter k. The solid line corresponds to equation (19), while the circles arise from simulations.

equations (18)–(20) and the values obtained for the velocity of pulses and the maximum
temperature from simulations, achieving an excellent agreement. The values of the parameters
used in this plot and the others below are those estimated from the experiments in [13].

The propagation condition has also been tested by letting the pulses evolve for large
times. For values below the threshold value, pulses finally vanished (the time pulses needed
to vanish depends on the value of x0 chosen), while for values above the threshold the pulses
asymptotically reached a constant shape (according to the requirement of travelling solutions).
Figure 2 shows the agreement found between these simulated processes and equation (19).

2.2. Case k = 0

When the convection term is neglected, the production function reduces just to the combustion
term. This case is very similar to F having the Lipschitz form [17], where F is zero for
temperatures lower than a threshold Th and positive above the threshold.

The main difference with the general case analysed above is that now heat is not dissipated
by the system, so now the temperature does not decrease for large times and travelling fronts
arise instead of pulses, as can be seen in figure 3. So, this specific case allows us to illustrate
one of the main features of the model, i.e, that the heat released by combustion decreases
continuously, and so due to convection (when k > 0) the flames die out asymptotically.

For k = 0, our expression (18) turns into the simplified form

−Thv

D
= �α

v
(22)

which now allows us to isolate v, obtaining then

v =
√

Dα(Qρ0 − Th)

Th

. (23)

We show the results for k = 0 because this specific case has been studied before in many
models [8, 10] (although it is not realistic in most cases) and because an elegant analytic
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Figure 3. Evolution in time of the temperature profile from simulations, with the solutions
travelling in the direction of the positive x axis. For the case with heat loss, k > 0 (dashed lines), a
travelling pulse arises, while in the case without heat loss, k = 0 (solid lines), the solution has the
form of a front.

expression for the velocity is found. Likewise, the condition for the existence of pulses and
the expression for Tmax become

Qρ0

Th

> 1 (24)

Tmax = Th − �. (25)

3. Model for several species

We can extend our arguments for the case in which two or more species can burn, each
characterized by its own parameters Qi, ρ0i , αi and Thi . This is an interesting case for those
experimentalists working on combustion of fuel beds with different mixed materials, or also
for the modellization of a single material made up of different reactants, as is usual in real
systems (wood, for example, usually contains 50–65% of cellulose, 20–35% of lignin and
5–15% of other components [18]).

Let us study the case of two species. The main difficulty when different fuels are
considered is that ignition temperatures (Th1 and Th2) are also different, so combustion of each
one does not start at the same moment. Then, a new parameter τ must be considered, which
is the time since one of the fuels starts burning till the second one does. The general equation
will then read
∂T

∂z
= D

∂2T

∂z2
− kT + Q1α1ρ01 e− αz

v H(z) + Q2α2ρ02 eα( z
v
−τ)H

(−z

v
− τ

)
. (26)

We can now use the same method for finding v that was used in the first section, but now
three different regions must be considered, i.e. (i) before combustion starts, (ii) when only one
of the species has reacted and (iii) when both species are burning. The boundary conditions
we impose are

T (∞) = 0 T (−∞) = 0 T (0) = Th1 T (−τv) = Th2. (27)
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(i) z > 0. Analogously to the region (i) in the section 2, we obtain

T (z) = Th1 em−z. (28)

(ii) −τv < z < 0. Now the first combustion term in (26) must be considered, so the exact
solution of the ODE is

T (z) = B1 em+z + B2 em−z + �1 e
αi z

v . (29)

(iii) z < −τv. When both combustion terms are included the solution is

T (z) = (Th2 − �1 e−α1τ − �2 e−α2τ ) em+(z+τv) + �1 e
α1z

v + �2 e
α2z

v (30)

where we define

�i = Qiαiρ0iv
2

(k − αi)v2 − Dα2
i

(31)

B1 = Th2 − �1 e−α1τ + (�1 − Th1) e−τvm−

e−τvm+ − e−τvm−
(32)

B2 = Th2 − �1 e−α1τ + (�1 − Th1) e−τvm+

e−τvm− − e−τvm+
. (33)

As our solution is divided into three regions, we now have to require the smoothness
of it at two different points (z = 0 and z = −τv). From the two resultant expressions we
will obtain a system to determine the front speed v and the transition time τ . However, if
one tries to solve that system in the general case, the expressions that arise are enormous. A
simplification can be done by recovering the condition that the solutions we are considering
have the form of a steep pulse. Then, the time τ is expected to be very small (τ � 1), so
we can neglect from our derivation the terms of order O(τ 2). By doing so, the following
expressions arise:

τ = Th1 − Th2

vTh1m−
(34)

vm+(�1 + �2) = �1α1 + �2α2 + v(m+Th1 − m−Th2). (35)

As happened with (18), again equation (35) leads us to a really complicated explicit
expression for v. Thus, we prefer to take (35) as our general solution.

It is also important in this case to analyse the result for the time τ . We have supposed
that the transition time should be small, but one can see from equation (34) that in general this
condition will only be true when (Th2 − Th1) � Th1. Thus, our solution will only hold for
those cases where the relative difference between the ignition temperatures is small. Figure 4
shows the results for equation (35) and its link to this limiting restriction on the ignition
temperatures. We obtain, as expected, that in the regime (Th2 − Th1) � Th1 the result found
agrees well with the pulse speed from simulations, but when this condition no longer holds,
clear differences appear.

However, we note that, despite this limitation, the model is still useful for many real
systems, as ignition temperatures for many kinds of organic fuels and woods are similar [18].
In the opposite case, when τ � 1 does not hold, we then have that Th2 is much higher
than Th1 and the speed of the front will decrease progressively. Finally, there would be a
critical Th2 for which the amount of heat released by the first reactant would not be sufficient
to reach Th2 and so only the first reactant would burn; then, we would have a case equivalent
to that in section 2 with the front speed determined by (18). This behaviour for large Th2 is
confirmed by our simulations and also shown in figure 4 (where, the dotted line represents the
value for the speed assuming that only the first reactant is present).
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Figure 4. Two-species model. Comparison between simulations (circles) and theory (solid line)
for the pulse speed as a function of (Th2 − Th1)/Th1. As argued in the text, the analytic solution
found is only valid when the condition (Th2 − Th1) � Th1 holds. For large (Th2 − Th1)/Th1, the
speed has the same value as if only the first reactant were present (dotted line).

4. Maxwell–Cattaneo model

We still propose another generalization of the model by considering the possibility that the
heat diffusion is governed by the Maxwell–Cattaneo equation

u
∂q

∂t
+ q = −D

∂T

∂x
(36)

instead of the usual Fourier law (u = 0), according to the extended irreversible
thermodynamics [19]. In this equation, q is the flux of heat in the x direction and u represents
a time delay which implies relaxational effects on the heat diffusion process, and so it offers a
possible solution to the problem of infinite speed of thermal signals detected for the Fourier law
[20]. There have been different discussions about the correct way of introducing the delay u
in physical systems [21, 22] and so the validity of the Maxwell–Cattaneo expression is still an
open field; specifically, some criticisms against it argue that it is not frame-invariant and so is
not a suitable physical law. An interesting generalization of (36) is proposed in [21] and more
comments about the problem of frame invariance can be found in [19] (p 32). However, we
stress that some previous works on combustion have already explored the Maxwell–Cattaneo
approximation, achieving interesting results [7, 9], so we consider it worthwhile to analyse it.

When we combine equation (36) and the energy balance equation

∂T

∂t
+

∂q

∂x
= F (37)

the hyperbolic RD equation arises [23],

∂T

∂t
+ u

∂2T

∂t2
= D

∂2T

∂x2
+ F + u

∂F

∂t
. (38)

For the specific case we are considering and writing the equation in terms of the variable z,
we obtain

(D − uv2)
∂2T

∂z2
+ v(1 + uk)

∂T

∂z
− kT + αQρ0(1 − uα) e

αz
v H(−z) = 0. (39)
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We can now easily solve this equation if we redefine our parameters in the following way:

D† = D − uv2

1 + uk
(40)

k† = k

1 + uk
(41)

Q† = Q
1 − uα

1 + uk
. (42)

Then, it may be seen that equation (39) is exactly the same as (9). Hence, we do not need to
present again the whole solution, as the boundary conditions are the same too (the delay does
not change the properties of combustion, which just depend on the absolute value of T; so, we
still have T = Th at z = 0). For the general case, we will obtain that the implicit expression
of v is, analogous to (18),

Th

(
m

†
− − m†

+

) = �†
(α

v
− m†

+

)
(43)

where the new quantities with index † are defined as those in section 2, with D†, k†,Q† instead
of D, k,Q.

It must be pointed out that the equivalence between (39) and (9) presents some limitations.
Actually, we need to impose that the parameters in our model are positive in order to ensure
the robustness of the method; so, from (40)–(42) we get some restrictions for the value of u,

u <
1

α
u <

D

v2
. (44)

The case k = 0 allows us to find an explicit expression again, which now reads

v =
√

Dα(Qρ0(1 − uα) − Th)

(1 − uα)(Th + αQρ0u)
. (45)

Likewise, the delay u also alters the threshold parameters for which the pulses are self-
sustained. By analytical calculus, from equation (43) one finds that the real solutions for v are
only possible in the regime

Qρ0

Th

>
α(1 + uk) + 2

(
k +

√
2kα(1 + uk)

)
α(1 − uα)

≡
(

Qρ0

Th

)
cr

(46)

and if we consider the limiting case of no convection losses (k = 0),

Qρ0

Th

>
1

1 − uα
. (47)

Figures 5 and 6 are equivalent to figures 1 and 2. According to them, the agreement found
between our analytical expressions ((43) and (46)) and simulations from the general PDE is
excellent. Moreover, these plots allow us to observe very clearly the effect of introducing
the time delay u on the system. We see that two consequences arise: (i) the speed of the
pulses decreases as the delay u increases, in accordance with other RD models based on
the Maxwell–Cattaneo expression [7, 23] and (ii) the threshold (Qρ0/Th)cr increases with u,
so the propagation condition becomes more restrictive. Both consequences agree with the
intuitive idea that under relaxational effects the diffusion process cannot be as efficient as in
the non-delayed case, since equation (36) implies that a finite time is required by the system
to respond to the thermal gradient.
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Figure 6. Plot of the no-propagation threshold (Qρ0/Th)cr as a function of the time delay u for the
Maxwell–Cattaneo model. The solid line corresponds to equation (19) and the points arise from
simulations.

5. Summary

We have studied analytically for the first time a RD model where the reaction term follows
first-order kinetics with a constant rate α plus convection losses. This model has been shown
before to be of particular interest for the modellization of temperature pulses travelling on fuel
beds [13]. From the agreement found in those works with experiments, one may conclude
that this new model (1)–(3) can be a good alternative to the usual Arrhenius law that many
theoretical works have considered before [8–10]. Specifically, the fact that these kind of RD
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models are continuous and the assumption we have made that the initial density of reactants
ρ0 is a constant, make us think that the model can be of special interest for systems where the
reactants are distributed homogeneously, as fuel beds or dense forests.

The main goal of our study has been to determine the speed and maximum temperature
of travelling pulses arising from the model and the conditions for the self-sustenance of these
pulses. Mathematically, we have used the ideas by Theodorakis and Svoukis for finding
travelling solutions of a PDE. They found that for a linear piece-like production function
F(T ), the speed selected by the travelling front arises from the condition that the solutions
must be continuous and smooth everywhere. Here, we have extended these arguments to the
case when F is a piece-linear function in time (instead of the main variable T) and for the case
of travelling pulses instead of fronts; so, the condition T (−∞) = Tmax they used has been
replaced here by T (∞) = 0 (as the fuel becomes exhausted, the heat released by combustion
decreases with time and the system returns to the initial state far behind the pulse).

In addition, we have considered some possible generalizations of the model which can
be of interest to scientists working on different topics. When several reactants are considered,
we have seen that there is still an analytical solution from which the speed of the pulse can
be found. This case can be of great interest when different mixed materials burning together
have to be modellized, as mentioned above, but it also allows the possible application to forest
fires with different kinds of trees burning (or taking into account combustion of high trees plus
bushfire combustion near the land).

The model in the third section, based on the ideas of the extended irreversible
thermodynamics, involves delay effects on the diffusion process. As one intuitively expects,
when the delay is considered, the pulses are slower and the condition of self-sustenance is more
restrictive. Hence, we think that this model can offer a new possibility to experimentalists for
determining if the Maxwell–Cattaneo equation is appropriate for physical systems and so it
could help to solve the present controversy.

Finally, there are still many possibilities of improving this model that we have not explored
yet. New terms can be added by taking into account heat radiation, interaction between the
different reactants, the effects of heterogeneities, etc. We shall develop these ideas in further
works.
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